RAID模式
前言
因为安装了黑群晖,需要做一个raid来保证数据的安全和完整,便了解了下raid的原理。
参考:基本RAID级别简介
RAID
RAID 0:无差错控制的带区组
要实现RAID 0必须要有两个以上硬盘驱动器,RAID 0实现了带区组,数据并不是保存在一个硬盘上,而是分成数据块保存在不同驱动器上。因为将数据分布在不)编辑和其它要求传输比较大的场合使用RAID0比较合适。同时,RAID可以提高数据传输速率,比如同驱动器上,所以数据吞吐率大大提高,驱动器的负载也比较平衡。如果刚好所需要的数据在不同的驱动器上效率最好。它不需要计算校验码,实现容易。它的缺点是它没有数据差错控制,如果一个驱动器中的数据发生错误,即使其它盘上的数据正确也无济于事了。不应该将它用于对数据稳定性要求高的场合。如果用户进行图象(包括动画所需读取的文件分布在两个硬盘上,这两个硬盘可以同时读取。那么原来读取同样文件的时间被缩短为1/2。在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
RAID 1:镜像结构
对于使用这种RAID 1结构的设备来说,RAID控制器必须能够同时对两个盘进行读操作和对两个镜象盘进行写操作。因为是镜象结构在一组盘出现问题时,可以使用镜象,提高系统的容错能力。它比较容易设计和实现。每读一次盘只能读出一块数据,也就是说数据块传送速率与单独的盘的读取速率相同。因为RAID 1的校验十分完备,因此对系统的处理能力有很大的影响,通常的RAID功能由软件实现,而这样的实现方法在服务器负载比较重的时候会大大影响服务器效率。当您的系统需要极高的可靠性时,如进行数据统计,那么使用RAID 1比较合适。而且RAID 1技术支持“热替换”,即不断电的情况下对故障磁盘进行更换,更换完毕只要从镜像盘上恢复数据即可。当主硬盘损坏时,镜像硬盘就可以代替主硬盘工作。镜像硬盘相当于一个备份盘,可想而知,这种硬盘模式的安全性是非常高的,RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%,是所有RAID级别中最低的。
RAID 1.5:一个新生的磁盘阵列方式
它具有RAID 0+1的特性,而不同的是,它的实现只需要2个硬盘。 从表面上来看,组建RAID 1.5后的磁盘,两个都具有相同的数据。当然,RAID 1.5也是一种不能完全利用磁盘空间的磁盘阵列模式,因此,两个80GB的硬盘在组建RAID 1.5后,和RAID 1是一样的,即只有80GB的实际使用空间,另外80GB是它的备份数据。如果把两个硬盘分开,分别把他们运行在原系统,也是畅通无阻的。但通过实际应用,我们发现如果两个硬盘在分开运行后,其数据的轻微改变都会引起再次重组后的磁盘阵列,没法实现完全的数据恢复,而是以数据较少的磁盘为准。
RAID 2:带海明码校验
这是RAID 0的改良版,以汉明码(Hamming Code)的方式将数据进行编码后分区为独立的比特,并将数据分别写入硬盘中。因为在数据中加入了错误修正码(ECC,Error Correction Code),所以数据整体的容量会比原始数据大一些,RAID 2最少要三台磁盘驱动器方能运作。 从概念上讲,RAID 2同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用一定的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂。因此,在商业环境中很少使用。下图右边的各个磁盘上是数据的各个位,由一个数据不同的位运算得到的海明校验码可以保存另一组磁盘上,具体情况请见下图。由于海明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码ECC码的硬盘,对于控制器的设计来说,它又比RAID 3、4或5要简单。没有免费的午餐,这里也一样,要利用海明码,必须要付出数据冗余的代价。输出数据的速率与驱动器组中速度最慢的相等。
RAID 3:带奇偶校验码的并行传送
用Bit-interleaving(数据交错存储)技术,它需要通过编码再将数据比特分割后分别存在硬盘中,而将同比特检查后单独存在一个硬盘中,但由于数据内的比特分散在不同的硬盘上,因此就算要读取一小段数据资料都可能需要所有的硬盘进行工作,所以这种规格比较适于读取大量数据时使用。 这种校验码与RAID 2不同,只能查错不能纠错。它访问数据时一次处理一个带区,这样可以提高读取和写入速度,它像RAID 0一样以并行的方式来存放数据,但速度没有RAID 0快。校验码在写入数据时产生并保存在另一个磁盘上。需要实现时用户必须要有三个以上的驱动器,写入速率与读出速率都很高,因为校验位比较少,因此计算时间相对而言比较少。用软件实现RAID控制将是十分困难的,控制器的实现也不是很容易。它主要用于图形(包括动画)等要求吞吐率比较高的场合。不同于RAID 2,RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。 如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。 利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为(n-1)/n。
RAID 4:带奇偶校验码的独立磁盘结构
RAID 4和RAID 3很像,不同的是它在分区时是以区块为单位分别存在硬盘中,但每次的数据访问都必须从同比特检查的那个硬盘中取出对应的同比特数据进行核对,也就是按磁盘进行的,每次是一个盘。由于过于频繁的使用,所以对硬盘的损耗可能会提高。(块交织技术,Block interleaving) 在图上可以这么看,RAID 3是一次一横条,而RAID 4一次一竖条。它的特点的RAID 3也挺象,不过在失败恢复时,它的难度可要比RAID 3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
RAID 5:分布式奇偶校验的独立磁盘结构
RAID Level 5是一种储存性能、数据安全和存储成本兼顾的存储解决方案。它使用的是Disk Striping(硬盘分割)技术。 RAID 5至少需要三个硬盘,RAID 5不是对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,可以利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。RAID 5可以理解为是RAID 0和RAID 1的折衷方案。RAID 5可以为系统提供数据安全保障,但保障程度要比镜像低而磁盘空间利用率要比镜像高。RAID 5具有和RAID 0相近似的数据读取速度,只是因为多了一个奇偶校验信息,写入数据的速度相对单独写入一块硬盘的速度略慢,若使用“回写缓存”可以让性能改善不少。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较便宜。
RAID 6: 两种存储的奇偶校验码的磁盘结构
与RAID 5相比,RAID 6增加第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,任意两块磁盘同时失效时不会影响数据完整性。RAID 6需要分配给奇偶校验信息更大的磁盘空间和额外的校验计算,相对于RAID 5有更大的IO操作量和计算量,其“写性能”强烈取决于具体的实现方案,因此RAID 6通常不会通过软件方式来实现,而更可能通过硬件方式实现。 同一数组中最多容许两个磁盘损坏。更换新磁盘后,数据将会重新算出并写入新的磁盘中。
RAID 7:优化的高速数据传送磁盘结构
RAID 7并非公开的RAID标准,而是Storage Computer Corporation的专利硬件产品名称,RAID 7是以RAID 3及RAID 4为基础所发展,但是经过强化以解决原来的一些限制。另外,在实现中使用大量的缓冲存储器以及用以实现异步数组管理的专用即时处理器,使得RAID 7可以同时处理大量的IO要求,所以性能甚至超越了许多其他RAID标准的实做产品。但也因为如此,在价格方面非常的高昂。
RAID 10/01:高可靠性与高效磁盘结构
RAID 10是先分割数据再镜像,再将所有硬盘分为两组,视为以RAID 1作为最低组合,然后将每组RAID 1视为一个“硬盘”组合为RAID 0运作。
![DHhZrt.png](https://s3.ax1x.com/2020/12/04/DHhZrt.png)RAID 01则是跟RAID 10的程序相反,是先镜像再将数据到分割两组硬盘。它将所有的硬盘分为两组,每组各自构成为RAID 0作为最低组合,而将两组硬盘组合为RAID 1运作。
当RAID 10有一个硬盘受损,其余硬盘会继续运作。RAID 01只要有一个硬盘受损,同组RAID 0的所有硬盘都会停止运作,只剩下其他组的硬盘运作,可靠性较低。如果以六个硬盘建RAID 01,镜像再用三个建RAID 0,那么坏一个硬盘便会有三个硬盘离线。因此,RAID 10远较RAID 01常用,零售主板绝大部分支持RAID 0/1/5/10,但不支持RAID 01。
RAID 50:被称为分布奇偶位阵列条带
RAID 5与RAID 0的组合,先作RAID 5,再作RAID 0,也就是对多组RAID 5彼此构成Stripe访问。由于RAID 50是以RAID 5为基础,而RAID 5至少需要3颗硬盘,因此要以多组RAID 5构成RAID 50,至少需要6颗硬盘。以RAID 50最小的6颗硬盘配置为例,先把6颗硬盘分为2组,每组3颗构成RAID 5,如此就得到两组RAID 5,然后再把两组RAID 5构成RAID 0。
RAID 50在底层的任一组或多组RAID 5中出现1颗硬盘损坏时,仍能维持运作,不过如果任一组RAID 5中出现2颗或2颗以上硬盘损毁,整组RAID 50就会失效。
RAID 50由于在上层把多组RAID 5构成Stripe,性能比起单纯的RAID 5高,容量利用率比RAID5要低。比如同样使用9颗硬盘,由各3颗RAID 5再组成RAID 0的RAID 50,每组RAID 5浪费一颗硬盘,利用率为(1-3/9),RAID 5则为(1-1/9)。
RAID 53:称为高效数据传送磁盘结构
它拥有一个镜射条带数组,硬盘里其中一个条带就是一个是由3组以上的RAID 5组成RAID 3硬盘阵列。
RAID 60
RAID 6与RAID 0的组合:先作RAID 6,再作RAID 0。换句话说,就是对两组以上的RAID 6作Stripe访问。RAID 6至少需具备4颗硬盘,所以RAID 60的最小需求是8颗硬盘。
由于底层是以RAID 6组成,所以RAID 60可以容许任一组RAID 6中损毁最多2颗硬盘,而系统仍能维持运作;不过只要底层任一组RAID 6中损毁3颗硬盘,整组RAID 60就会失效,当然这种情况的概率相当低。
比起单纯的RAID 6,RAID 60的上层透过结合多组RAID 6构成Stripe访问,因此性能较高。不过使用门槛高,而且容量利用率低是较大的问题。
软RAID和硬RAID
根据实现模式,RAID又分为软RAID和硬RAID。
软件磁盘阵列(Software RAID)
主要由CPU处理数组存储作业,缺点为耗损较多CPU资源运算RAID,优点则是价格偏低。分类有3种:
基于主板的磁盘阵列:只需要主板支持即可(通常是芯片组内置的RAID功能,如Intel Matrix RAID,Intel Rapid Storage Technology),不需要任何磁盘阵列卡。若主板损坏,可能难以购买同款主板重建RAID。
硬件辅助磁盘阵列(Hardware-Assisted RAID):需要一张基于Fake RAID的RAID卡,以及厂商所提供的驱动程序,但此类RAID卡仍然通过CPU进行运算。这款RAID较易迁移到其他电脑。RAID功能靠运行于操作系统的厂商驱动程序和CPU运算提供。
操作系统的RAID功能:如Linux、FreeBSD、Windows Server等操作系统内置RAID功能。
硬件磁盘阵列(Hardware RAID)
RAID卡上内置处理器,不需要服务器的CPU运算。优点是读写性能最快,不占用服务器资源,可用于任何操作系统,也能在系统断电后,透过备份电池模块(BBU, Backup Battery Unit)以及非易失性存储器 (NVRAM)将硬盘读写日志档(Journal)包含的剩余读写作业先记录在存储器中,等待电力供应撤销后,再由NVRAM取回日志档数据,接着再完成读写作业,将剩余读写作业安全完成以确保读写完整性。备份电池模块通常会配合数组卡的Write-Back缓存模式,借由此存储器缓存读写作业以得到更高的读写性能;但是没有备份电池模块的硬件磁盘阵列卡,切勿使用Write-Back缓存模式以免遭遇断电情形导致读写数据流失。此外,因为硬件磁盘阵列卡搭载内置处理器,所以可以与操作系统分离出来,对硬盘进行各种作业,还原作业的速度也比软件磁盘阵列快。缺点是其售价很高。